
ARTICLES

THE EARLY YEARS OF LOGIC
PROGRAMMING

This firsthand recollection of those early days of logic programming traces
the shared influences and inspirations that connected Edinburgh, Scotland,
and Marseilles, France.

ROBERT A. KOWALSKI

The name Prolog is ambiguous. It was originally in-
tended as the name for the programming language de-
veloped by Alain Colmerauer and Phillipe Roussel
in the summer of 1972. The name was suggested by
Roussel’s wife, Jacqueline, as an abbreviation for pro-
grammation en logique. In time, however, this abbrevia-
tion has been used to refer to the concept of logic pro-
gramming in general. It is a confusing notion, as claims
made for the general concept of logic programming do
not always hold for the programming language, Prolog,
and vice versa. In an attempt to minimize such confu-
sion, I shall reserve the term Prolog to refer to the
programming language alone.

This is not the place for an extensive discussion of
what should or should not be regarded as logic program-
ming, a term that is equally ambiguous. However, with-
out wanting to stir further controversy, let me hazard
the following rough characterization: Logic program-
ming shares with mechanical theorem proving the use
of logic to represent knowledge and the use of deduc-
tion to solve problems by deriving logical conse-
quences. However, it differs from mechanical theorem
proving in two distinct but complementary ways: (1) It
exploits the fact that logic can be used to express defi-
nitions of computable functions and procedures; and
(2) it exploits the use of proof procedures that perform
deductions in a goal-directed manner, to run such defi-
nitions as programs.

A consequence of using logic to represent knowledge
is that such knowledge can be understood declaratively.
A consequence of using deduction to derive conse-
quences in a computational manner is that the same
knowledge can also be understood procedurally. Thus,
logic programming allows us to view the same knowl-
edge both declaratively and procedurally.

The most straightforward case of logic programming
is when information is expressed by means of Horn

01988 ACMOOOl-0782/88/0100-0038 $1.50

clauses and deduction is performed by backwards rea-
soning embedded in resolution [29]. But logic program-
ming can also be understood more generally, for exam-
ple, to include negation by failure [3], set construction
[4, 321, or goal-directed reasoning with equations. The
advantage of the more liberal notion of logic program-
ming is that it points the way for further developments
to encompass richer fragments of logic and give a com-
putational interpretation to a greater variety of proof
procedures.

The liberal notion of logic programming do’es not in-
clude a number of related uses of logic in programming.
It excludes, for example, systems of constructive logic
in which proofs are interpreted as programs, and it ex-
cludes uses of logic in which computation is construed
model-theoretically as evaluating a formula in an inter-
pretation.

This article is a personal account of some of the early
history of logic programming, ending with my move
from Edinburgh to London in December 1974. The
chronicle is unavoidably biased toward my own recol-
lection of events at the University of Edinburgh. I am
especially conscious that it does not do justice to re-
lated activities that took place during that time at the
Universite d’Aix Marseilles.

THE EDINBURGH-MARSEILLES CONNEC’I’ION
My first contact with the Marseilles group was a three
or four day visit in the summer of 1971 at the invitation
of Colmerauer, who was then head of the artificial in-
telligence (AI) team at the university. The group, which
consisted of Bob Pasero, Roussel, and Colmerauer, was
developing a natural language question-answlering sys-
tem. Roussel and Jean Trudel, a colleague visiting from
the University of Montreal, had read [21], which de-
scribes the SL-resolution theorem prover, and Roussel
was interested in using it for the deductive component
of the question-answering system.

Most of my visit consisted of intensive discussions

38 Comnunications of the ACM]anuary 1988 Volume 31 Number I

with Colmerauer about using logic to represent gram-
mar and using resolution to parse sentences. Earlier, I
had devised an inefficient representation of grammars,
with explicit axioms of associativity for string conca-
tenation. Colmerauer saw how to improve the repre-
sentation significantly, avoiding associativity by formal-
izing the graph representation of strings used in his
Q-Grammars [5]. We observed that the bottom-up be-
havior of his Q-system parser could be obtained by
using hyperresolution. SL-resolution behaved as a top-
down parser. It is because of this work that 1971 is
sometimes given as the year Prolog was born.

My short visit was very productive, and we planned
to continue our collaboration. Our plans were realized
in the spring of 1972 during my second visit to Marseilles.
My trip was again at Colmerauer’s invitation. This time
I was accompanied by doctoral student, Ed Wilson.

During this period the idea of programming in predi-
cate logic was born. I had been asked to serve as exter-
nal examiner for Roussel’s T/z&e de Troisikrw Cycle [30].
I was impressed by his use of “formal equality” (charac-
terized by the single axiom x = x) to avoid the ineffi-
ciencies of the normal equality axioms in certain
applications. This lead me to look for other cases where
a change of representation could lead to improved effi-
ciency. It was not long before I could see how to write
computationally efficient axioms for such recursive
predicates as addition and factorial. With Ed Wilson
and Roussel, I looked at both Horn clause and non-
Horn clause definitions “executed” by SL-resolution.
Roussel, in turn, spoke with Colmerauer and reported
back ideas that arose during their conversations. I did
not realize until much later how closely Colmerauer’s
work paralleled my own.

Articles

which still exists today, may reflect the difference be-
tween our early contributions to the subject.

From Marseilles I wrote to Bernard Meltzer at the
University of Edinburgh to explain the new ideas. In
his reply, Meltzer wrote that my letter “generated a lot
of discussions.” Pat Hayes, in particular, argued that I
seemed to be taking credit for the thesis that “computa-
tion is controlled deduction,” which he had been advo-
cating in Edinburgh before me.

Indeed, Hayes had argued that computation and de-
duction were similar some time before my second visit
to Marselles. In particular, he argued that inference
with equations imitated computation in Lisp and that
Robert Boyer and J Moore’s new structure-sharing
method of implementing resolution [l] gave similar
run-time structures to the Bobrow and Wegbreit spa-
ghetti stack mechanism. Hayes received little credit for
his ideas, and to a large extent, I failed to appreciate his
ideas both because I had never programmed in Lisp and
because I did not take much interest in implementa-
tion.

Hayes had been my closest friend at the University of
Edinburgh since my arrival as a Ph.D. student in Octo-
ber 1967. The first research either one of us did was a
combined effort that resulted in a paper on semantic
trees in Machine Intelligence, vol. 4. We were collaborat-
ing on a book on automated theorem proving and had
finished a substantial part of it before Hayes left Edin-
burgh for a second visit to Stanford University. At Stan-
ford he learned about Planner [12], and when he re-
turned to Edinburgh, he wanted to rewrite our book
significantly to take Planner into account. We spent
many hours discussing and arguing the relationship be-
tween Planner and resolution theorem proving. These

Let me hazard the following rough characterization: Logic programming shares with
mechanical theorem proving the use of logic to represent knowledge and the use of
deduction to solve problems by deriving logical consequences.

Colmerauer and I had quite different backgrounds discussions were part of the background to my second
and placed different values on different things. Colmer- visit to Marseilles. A few months after I returned,
suer was a computer scientist who combined practical Hayes left Edinburgh for a lectureship at the University
achievements with sound contributions to their theory. of Essex.
I was a logician at heart, who suffered a faint revulsion When I returned from Marseilles, Boyer and Moore
for programming and everything else to do with com- were very enthusiastic. Programming in resolution
puters. As a student, I loved logic and hated recursion logic seemed to be just what they were looking for to
theory. exploit their earlier discovery of the structure sharing

Looking back on our early discoveries, I value most method of implementing resolution. They were already
the discovery that computation could be subsumed by aware that structure sharing was analogous to the use
deduction. Colmerauer was not so readily satisfied with of association lists in the implementation of Lisp. By the
purely theoretical results. For him, the Horn clause def- summer of 1972, however, they were so enthusiastic
inition of appending lists was much more characteristic that they developed their own logic programming lan-
of the importance of logic programming: It provides a guage called Baroque [27].
basis for more powerful programming methods and is Baroque was an assembly-like programming language
ideally suited to nonnumerical applications such as nat- that provided list processing and arithmetic primitives
ural language processing. This difference of emphasis, defined by Horn clauses and interpreted by a structure-

January 1988 Volume 31 Number 1 Communications of the ACM 39

Articles

sharing SL-resolution theorem prover with a depth-first eree, the grant was finally approved. It supported sev-
search strategy. “Demons” were attached to primitive era1 visits during the period of October 1973 through
functions such as addition and multiplication, to ex- September 1974 by Warren, Steve Isard, Bob Welham,
ploit the machine’s built-in arithmetic. Boyer and van Emden, and myself to Marseilles. It also, allowed
h4oore then coded an interpreter in Baroque for a pro- Colmerauer, Roussel, and Henri Kanoui to visit Edin-
gramming language akin to pure Lisp, with pattern- burgh. By March 1974, I had completed a 100-page draft
matched invocation and nondeterminism inherited of “Logic for Problem Solving” [18]. This was widely

-

In the eyes of most North American researchers in AI, resolution had long been discredited.
The fashion had turned. . . toward the procedural representation of knowledge and ,domain-
specific problem solvers.

from its implementation language. Programs written in
the Lisp-like language were about 10 times slower than
similar programs written directly in Baroque. However,
what intrigued Boyer and Moore about the language
was that it permitted (indeed, encouraged) the symbolic
execution of programs and hence the interpreter could
prove simple theorems about programs, such as “There
exists an X such that (Length X) is 3.” As they tried
to prove more complicated theorems about programs,
for example, that append is associative or that the
length of (Append A B) is the sum of the lengths
of A and B, they realized it was necessary to do math-
ematical induction. Boyer and Moore then turned
their attention toward mechanizing inductive
proofs [Z].

The summer of 1972 was a busy time for the develop-
ment of logic programming. Back in Marseilles, Roussel
and Colmerauer designed and implemented the first
Prolog system in Algol-W as an adaptation of Roussel’s
existing SL-resolution theorem prover. Teaming with
Pasero they implemented a large natural language pro-
cessing system. This was the first major program writ-
ten in Prolog [6], and it was written in 1972. I contin-
ued my own investigations and reported my findings
[15] at the first “Mathematical Foundations of Com-
puter Science” conference in Jablonna, Poland, in Au-
gust 1972.

The situation in Edinburgh during the next year was
stormy, to say the least. In the eyes of most North
American researchers in AI, resolution had long been
discredited. The fashion had turned against uniform,
general-purpose theorem provers toward the procedural
representation of knowledge and domain-specific prob-
lem solvers.

Those of us in Edinburgh who continued working in
the resolution paradigm were increasingly isolated from
the rest. I was fortunate, however, to be joined in my
work by David Warren and Maarten van Emden. Dur-
ing this time our contact with Marseilles was a great
inspiration and comfort. I wrote an application for a
NATO research grant to fund exchanges between our
two groups to investigate further the application of logic
programming to natural language processing. Despite
some last-minute problems with a hostile potential ref-

circulated for many years before the expanded version
[20] was published in 1979.

I was an avid supporter of coroutining for Horn
clause logic programs during this period. I d’escribed
this in [16] at the “IFIP 74” conference in Stockholm.
I had many discussions about this with Roussel and
encouraged Robert Hill, a Ph.D. student of Meltzer’s
who was informally under my supervision, to investi-
gate its properties. He invented the name Lush (linear
resolution with unrestricted selection for ho.rn clauses)
and proved its completeness in [13]. Krystof Apt and
van Emden later used the now more familiar term
SLD-resolution for the same system.

Among Warren’s many interesting studies before vis-
iting Marseilles was his investigation of programming
with non-Horn clauses. He interpreted this as the ana-
log of block structure in Algol-like language:;. Of more
lasting significance, however, was his conversion to
Prolog during his visit to Marseilles. I can recall his
indignation when he returned over my lack of support
for Prolog. Certainly, given my previous research in
heuristic search [14], I found it hard to accept Prolog’s
incomplete depth-first, backtracking search strategy.
Moreover, with my theorem proving background, I also
found it hard to be enthusiastic about Prolog’s sequen-
tial execution of procedure calls. I hoped it might be
possible to base a more powerful logic programming
system on the use of coroutining in Lush or in the
connection graph proof procedure [17]. But Prolog was
a practical programming language, whereas (at that time
Lush and connection graphs were not. It was not until
around 1976 when I was at Imperial College in London
that I finally appreciated the ingenious, delicate bal-
ante that Prolog achieved between being a f#sirly primi-
tive, but useful, theorem prover, and being a very high-
level programming language.

In 1973 I worked with van Emden investigating the
relationship between Scott’s fixed point semantics of
recursive programs and the Tarskian semantics and
proof theory of first-order logic [31]. We also had
broader aspirations of adapting existing techniques
for proving properties of recursive functions, such as
Scott’s fixed point induction, to logic programs. But we
were unable to do so within the time constraint we set

40 Communications of the ACM January 1988 Volume 31 Number I

Articles

for ourselves for the semantics paper. These broader
problems were later solved by Keith Clark at Imperial
College.

Most of the early converts and contributors to logic
programming became so as the result of personal con-
tacts and discussions rather than through industry pub-
lications. In addition to the many I have mentioned are
Luis Moniz Pereira’s group in Lisbon, Portugal, the*
Hungarian Prolog activities, and the work of Sten-Ake
Tarnlund’s group in Sweden. All their efforts were sim-
ilarly initiated as the result of contacts with the Edin-
burgh team.

Luis Moniz Pereira came to the University of Edin-
burgh to work as a research fellow in 1974-1975. He
was an active contributor to a working group we orga-
nized to develop logic programs for geometry theorem
proving. He also contributed to Warren’s Prolog compi-
ler and later, when he returned to Lisbon, worked with
Fernando Pereira until 1978.

Istvan Nemeti arrived at Edinburgh the day I left for
Imperial College in December 1974. He collaborated
with van Emden on semantic issues of logic program-
ming and took back to Hungary a copy of Warren’s
notes on Prolog implementation. These notes were the
beginning of Prolog in Hungary.

I met Tarnlund at the IFIP conference in August
1974. He had already implemented an SL-resolution
theorem prover and was planning to implement a con-
nection graph theorem prover. He was immediately at-
tracted to logic programming. I visited him for two
weeks in Stockholm in December 1974.

I left Edinburgh for a readership at Imperial College
in December 1974, leaving my work with Warren and
van Emden. At Imperial College there was no previous
interest in theorem proving or logic programming. I was
very fortunate that Clark was able to take a two-year
leave of absence from Queen Mary College to work
with me on an SERC grant. Today, the Logic Program-
ming Group at Imperial College includes 2 professors
1 reader, 7 lecturers, 3 SERC advanced research fel-
lows, 19 research assistants, 5 administrative and cleri-
cal staffers, and 13 research students, for a total of 50.

Most of the early converts and contributors
to logic programming became so as the
result of personal contacts and discussions
rather than through industry publications.

THE RELATIONSHIP BETWEEN LOGIC
PROGRAMMING, SL-RESOLUTION, AND
PLANNER
Perhaps the first zenith of logic in AI occurred when
Cordell Green illustrated how to represent question-
answering, plan formation, program synthesis, and pro-
gram simulation in first-order logic [lo]. His attempts to
use resolution for problem solving in these domains,

however, were less successful. The resolution systems
that had been developed by that time and were at his
disposal were intolerably redundant, combinatorially
explosive, and unnatural in behavior. The early enthu-
siasm that greeted Green’s work soon gave way to a
massive backlash. Terry Winograd’s thesis probably
offered the most eloquent and influential voice to
the attack. The alternative, which he and others
advocated, was a procedural rather than a declarative
representation of knowledge and the employment of
domain-dependent problem solvers rather than uni-
form, general-purpose theorem provers.

Carl Hewitt’s programming language Planner [12]
was regarded as the embodiment of these ideas. How-
ever, Planner was also based on logic. As Hewitt ex-
plained, an implication “A if B” could be interpreted as
four different Planner procedures:

(1) To show A, show B;
(2) to show not-B, show not-A;
(3) given B, assert A; and
(4) given not-A, assert not-B.

Linear resolution could implement the first two of
these; and hyperresolution with renaming, the second
two. But the early versions of these methods were
highly redundant. Linear resolution in particular, given
an implication

A ii B, and Bz and . . . and B,,

would attempt to solve the subgoals B, , . . . , B, in all n
factorial ways. It was ironic that Loveland [23], who
with Luckham [24] independently invented linear reso-
lution, did not at first see the connection with his own
model elimination proof procedure [22]. Model elimina-
tion, using a very different formalism, could be inter-
preted as a form of linear resolution without the n
factorial redundancy. Eventually, the connection
between the two was independently noted both by
Loveland and by Kuehner and myself. We called the
resulting synthesis SL-resolution (linear resolution with
selection function). At the same time, Reiter [28] dis-
covered the same ordering restriction on linear resolu-
tion. Virtually all obvious redundancies were removed
from linear resolution by this stage, and most of Green’s
examples could have been rerun with much greater
success.

I can recall trying to convince Hewitt that Planner
was similar to SL-resolution. Planner gave a problem
reduction interpretation to logic in an ad hoc but prag-
matic fashion. It gave the programmer greater control
than general, unrestricted resolution, but was also less
uniform. Its pattern matcher, in particular, was both
more complicated and more restricted than full unifica-
tion. Moreover, because of the way it was embedded in
Lisp, it was not easy to determine whether Planner
without Lisp was itself a general-purpose programming
language. As Colmerauer once said, no one would try
to define the list append operation in pure Planner
without resorting to Lisp.

This last reservation about Planner as a programming

Ianuay 1988 Volume 31 Number 1 Communications of the ACM 41

Articles

language also applied to SL-resolution. Although the
problem-reduction behavior of SL-resolution was ap-
preciated from the very beginning, it was not clear at
first that this was sufficient to make clausal logic or the
Horn clause subset a general-purpose programming lan-
guage. It was this realization that we now associate
with logic programming and Prolog. Moreover, it was
this idea that was missed when the early critics of
Prolog mistakenly regarded it simply as a reinvention of
Planner.

THE RELATIONSHIP BETWEEN LOGIC
PROGRAMMING AND COMPUTATION =
CONTROLLED DEDUCTION
The relationship of logic programming with Hayes’s
Golux idea [ll] that computation = controlled deduction is
both subtle and complex. On the one hand, Golux is
more general. Hayes first applied his notion to Lisp,
before the discovery of logic programming, whereas in
[ll] he applied it to programs expressed by means of
equations. On the other hand, Golux is also more spe-
cific. Given a description L of a problem formulated in
logic, Hayes advocated varying the control C of the
problem solver/theorem prover to obtain efficient,
computational behavior. He argued against altering the
declarative component L to make it easier to control.

From a logic programming point of view,
the Golux idea is more like running
programming specificafions than if is like
writing programs.

From a logic programming point of view, the Golux
idea is more like running program specifications than it
is like writing programs. It is central to the idea of logic
programming, and of Prolog in particular, that we be
prepared to alter the declarative component L of a
problem description to obtain desired problem-solving
behavior A from a given control C. This has been
expressed by the pseudoequation [19]

A(Igorithm) = L(ogic) + C(ontrol).

With Prolog we have a fixed C and can improve A only
by improving I,. Hayes, however, emphasized the value
of changing A by changing only C. Logic programming
is concerned with the possibility of changing both L
and C.

Golux was influenced by Absys, a declarative pro-
gramming language developed at the University of
Aberdeen and reported in a number of papers in the
Machine Intelligence series [7-91. Absys anticipated a
number of Prolog features, such as “invertability,”
“negation by failure,” “aggregation operators,” and the
central role of backtracking. Like Golux it emphasized
the separation of logic from control and the value of
changing A by changing C.

McCarthy’s interpretation of logic programming, ap-
plied to the map coloring problem [z], fixes the logic
of the problem and attempts to obtain a desired algo-
rithmic behavior by changing only the control. This is
in the Golux spirit.

McDermott’s recent criticism of the “logicist” position
on the role of logic in AI [26] seems to be addressed
primarily to the Golux idea. He advocates a return to
procedural representations of knowledge, while ac-
knowledging that representations that have both deno-
tational (logic) and procedural semantics wo-uld be
ideal.

Acknowledgments. I am grateful to Bob Boyer, Frank
Brown, Alan Bundy, Alain Colmerauer, Ted Elcock,
Pat Hayes, Donald Loveland, David Luckham, John
McCarthy, J Moore, Alan Robinson, David Warren,
and Bob Welham for their helpful comments on earlier
drafts of this paper.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

6.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Bayer, R.S., and Moore, JS. The sharing of structure in theorem
proving programs. In Machine Intelligence, vol. 7. B. Meltzer and
Il. Michie, Eds. Edinburgh University Press, Edinburgh, U.K.,
pp. 101-116.
Bayer. R.S.. and Moore, JS. Proving theorems about LISP functions.
I. ACM 22. 1 (Jan. 19751, 129-144.
Clark, K.L. Negation as failure. In Logic and Data Bases, H. Gall&e
and J. Minker, Eds. Plenum, New York. 1978, pp. 293-322.
Clark, K.L., McCabe, F.G., and Gregory, S. IC-PROLOG language
features. In Logic Programming, K.L. Clark and S.-A. TBtmlund, Eds.
Academic Press, New York, pp. 253-266.
Colmerauer, A. Les Systimes-Q ou un formalisme pour analyser et
synthetiser des phrases sur ordinateur. Rep. 43, Dept. of Computer
Science, Univ. of Montreal, Quebec, 1970.
Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P. Un systeme
de communication homme-machine an FranGais. Rep., Groupe
d’Intelligence Artificielle, Univ. d’Aix Marseille II. Luminy, France.
1973.
Elcock, E.W. Descriptions. In Machine Intelligence. vol. 3, D. Michie.
Ed. Oliver and Boyd, Edinburgh, U.K.. 1968, pp. 173-180.
Foster. J.J., and Elcock, E.W. Absys 1: An incremental compiler
for assertions-An introduction. In Machine Intelligence, vol. 4,
D. Michie, Ed. Edinburgh University Press, Edinburgh, U.K.,
pp. 423-429.
Foster, J.M. Assertions: Programs written without specifying unnec-
essary order. In Machine Intelligence. vol. 3, D. Michie, Ed. Edin-
burgh University Press, Edinbirgh, U.K., 1968. pp. 387-392.
Green, CC. Application of theorem-proving to problem solving. In
Proceedings offICAI-1. D.E. Walker and L.M. Norton, Eds. (Washing-
ton, DC.). IJCAI, 1969, pp. X9-240.
Hayes, P.J. Computation and deduction. In Proceedings of the 2nd
MFCS Symposium. Czechoslovak Academy of Sciences, 1973, pp.
105-118.
Hewitt, C. PLANNER: A language for proving theorems in robots. In
Proceedings oflJCAZ-I [Washington, D.C.). IJCAI. 1969, pp. 295-301.
Hill, R. LUSH resolution and its completeness. DCL Mamo 78,
School of Artificial Intelligence, Univ. of Edinburgh, L’.K., Aug.
1974.
Kowalski, R.A. Search strategies for theorem proving. in Machine
Intelligence. vol. 5. B. Mel&r and D. Micbie, Eds. Edinburgh Univer-
sity P&s, Edinburgh, U.K., 1969. pp. 181-201.
Kowalski, R.A. The predicate calculus as a programming language.
In Proceedings of the Internafional Symposium and Summer School on
Mathematical Foundations of Computer Science (Jablonna, Poland,
Aug.). 1972.
Kowalski, R.A. Predicate logic as a programming language. DCL
Memo 70, School of Artificial Intelligence, Univ. of Edinburgh, U.K.,
Nov. 1973. (Also in Proceedings of ZFIP 1974 [Stockholm, Sweden).
North-Holland, Amsterdam, 1974, pp. 569-574).
Kowalski. R.A. A proof procedure using connection graphs. DCL
Memo 74, School of Artificial Intelligence, Univ. of Edinburgh, U.K.,
1973. [Also: I. ACM 22, 4 (Oct. 1974), 572-595.)

42 Communications of the ACM January 1988 Volume 31 Number 1

Articles

18. Kowalski, R.A. Logic for problem solving. DCL Memo 75, School of 31. van Emden, M.H., and Kowalski, R.A. The semantics of predicate
Artificial Intelligence. Univ. of Edinburgh, U.K., 1974. logic as a programming language. I. ACM 23, 4 (Oct. 1976), 733-742.

19. Kowalski. R.A. Algorithm = logic + control. Commun. ACM 22, 7 (Also: DCL Memo 73, School of Artificial Intelligence, Univ. of Edin-
(July 1979),424-436. burgh, U.K., Feb. 1974.)

20. Kowalski, R.A. Logic for problem solving. Elsevier North Holland
Inc.. New York, 1979.

21. Kowalski, R.A., and Kuehner. D. Linear resolution with selection
function. School of Artificial Intelligence, DCL Memo 34, Univ. of
Edinburgh, U.K., 1971. (Also: Artif Intell. 2 (1971), 227-260.)

22. Loveland, D.W. Mechanical theorem-proving by model elimination.
J. ACM 15, 2 (Apr. 1966). 236-251.

23. Loveland, D.W. A linear format for resolution. In Proceedings of the
INRlA Symposium on Automatic Demonstration. Springer-Verlag, New
York, 1970, pp. 147-162.

32. Warren, D.H.D. Higher-order extensions to PROLOG: Are they
needed? In Machine Intelligence, vol. 10. I.E. Hayes and D. Michie,
Eds. Wiley, New York, 1982, pp. 441-454.

24. Luckham, D. Refinement theorems in resolution theory. In Proceed-
ings of the INRIA Symposium on Automatic Demonstration. Springer-
Verlag. New York, 1970, pp. 163-190. December 1966, Rocquen-
court, France.

CR Categories and Subjects Descriptors: D.3.2 [Programming Lan-
guages]: Language Classifications-Prolog; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic--logic programming; 1.2.3
[Artificial Intelligence]: Deduction and Theorem-Proving-logic pro-
gramming: K.2 [Computing Milieu]: History of Computing-people; soft-
ware; systems; theory

25. McCarthy, J. Coloring maps and the Kowalski doctrine. 1962.
Unpublished. Stanford University.

26. McDermott, D. Critique of pure reason. Comput. Intell. To be pub-
lished.

General Terms: Languages, Theory
Additional Key Words and Phrases: Absys, Baroque, Golux, linear

resolution, Lush, model elimination, Planner, resolution, SL-resolution.
SLO-resolution, structure sharing

27. Moore, J. Computational logic: Structure sharing and proof of pro-
gram properties, Parts I and II. DCL Memo 67, School of Artificial
Intelligence, Univ. of Edinburgh, Edinburgh, U.K., 1974.

28. Reiter, R. Two results on ordering for resolution with merging and
linear format. I. ACM 18, 4 (Oct. 1971), 630-646.

29. Robinson, J.A. A machine-oriented logic based on the resolution
principle. 1. ACM 12, I (Jan. 1965), 23-41.

30. Roussel, P. Definition et traitement de l’egalitc formelle an dbmon-
stration automatique. Thesis, Facultb des Sciences, Univ. d’Aix-
Marseille, Luminy, France, 1972.

Author’s Present Address: Robert A. Kowalski, Imperial College of Sci-
ence and Technology, University of London, 160 Queen’s Gate, London,
SW7 2BZ England.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Perlis l Wilkes- Hamming- Minsky
Wilkinson* McCarthy* Dijkstra
Bachman l Knuth 0 Newell l Simon
Rabin l Scott l Backus. Floyd
lverson l Hoare*Codd-Cook
Thompson l Ritchie Wirth $gs

KarP

What do these prominent computer scientists
have in common?
They’re all recipients of the ACM’s Turing Award recipients. Several of
revered Turing Award, and their the recipients have, in addition,
unique insights have been compiled written postscripts for their lectures
for you in ACM Turing Award to give you an updated perspective
Lectures: The First Twenty Years: on significant changes in the field.
1966-1985. It’s the first book in the
Anthology Series from the newly Fuel for creativity.
formed ACM Press (a unique collab- These 23 masters and innovators of
oration between ACM and Addison-
Wesley Publishing Company).

computer science will broaden your
horizons and inspire your own

After introductions from Robert creative efforts in the field. So don’t

Ashenhurst (Anthology Series editor) miss out on the opportunity to add

and Susan Graham, ACM Turing this enlightening book to your

Award Lectures presents the pro- professional collection at the special

vocative lectures delivered by the 23 ACM members’ prrce of $31.50.
Order today!

i
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

YES! I want to take advantage of the special
10% savings for ACM members. Please send
me ACM Turing Award Lectures: The First
Twenty Years: 1966-1985 (O-201 -07794-g)
at $31.50 (nonmembers may purchase for the
regular price of $34.95).
I’ve enclosed a check for $, the
total of my order plus $3.00 for postage and
handling.

ACM Membership #
I prefer to charge my order. I understand I’ll be
charged for shipping and handling.

0 VISA 0 Mastercard (Interbank # 1
q American Express
Account # Exp. Date ___

Signature

Please ship 0 UPS 0 U.S. Mail

Name

Address

City , State ~ Zip
Send order with payment to: ACM Order Depart-
ment-PO Box 64145*Baltimore, MD 21264

Or call toll free l-800-342-6626. In Alaska,
Maryland, and outside the U.S., call 301-528-4261.

.

Addison-Wesley Pyblishing Company
We publish the leaders.

]anunry 1988 Volume 31 Number I Communications of the ACM 43

